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Abstract

Phase transitions in measures of cluster connectedness may

be used to identify critical points in the propagation of an

epidemic. These critical points reflect order of magnitude

shifts in network properties and thus define appropriate re-

gions for aggregation in the evolving socio-temporal portrait.

Analysis of pre- and post- transitional images at these criti-

cal points can define principle axes of propagation and estab-

lish the appropriate local scale (aggregate level) for resource

allocation strategies. Semi-supervised learning techniques

based on Gaussian random fields allow prediction of infec-

tious spread to unlabeled entities. Projections of disease

propagation inform allocation strategies for intelligent tar-

geting of response resources to the most vulnerable locations

in the unlabeled network. Strategies for perimeter sensing

and establishment of containment boundaries may also be

defined in terms of classification risk of the unlabeled nodes.

1 Introduction:

Channels of epidemic propagation possess a natural
multi-scalar structure, making the area of pandemic re-
sponse and control an obvious target for hierarchical ag-
gregation techniques. Theoretical challenges arise in the
application of traditional techniques for spatial aggrega-
tion due to the interplay of spatio-temporal factors with
social processes more naturally defined on the social net-
work. This complexity results in a rich problem domain
supporting the examination of practical and theoretical
extensions of the spatial aggregation framework. The
potential social benefit of the application provides ad-
ditional incentive for the development of theoretically
sound and practically effective solutions.

Several of the more challenging issues for the de-
velopment and application of aggregation techniques in
the context of pandemic response are:

• The complex interplay of spatial and social network
structure in definition of propagation boundaries.

• The need to develop an evolutionary portrait of
the pandemic, rather than a traditional stationary
snapshot.

• The difficulty of defining global parameterizations
of scale in an organically evolved spatio-social
substrate such as a city environment.

• The need for information directed sampling and
resource allocation strategies, due to the difficulty
of data acquisition and implementation of response
strategies in a real environment.

The appeal of multi-scalar techniques such as spa-
tial aggregation lies in the recursive reduction of infor-
mational and computational complexity. In the aggre-
gation process, the output of local processes defined on
a lower scalar level are aggregated and passed on to the
next higher level where an analysis of similar complexity
is performed. The inter-scalar definition of the aggre-
gate hierarchy is designed to capture order of magnitude
shifts in behavior and structure. However, in the case
of an epidemic propagating through a social network,
it may be difficult to establish appropriate scalar levels
for analysis of the spatial interactions of the processes.
In fact, the concept of spatial neighborhood itself must
be reconsidered, given the natural tendency of social
processes to jump from region to region with shifts in
behavioral context (for example, when an entity travels
from home to work to school).

Rather than attempt to wrest a useful spatial de-
composition of epidemic transmission channels from
the tangle of temporally and contextually interleaved
contact events which define the potential transmis-
sion pathways in a dynamic city environment, we shall
adopt, instead, a process driven methodology. In this
framework, the temporal behavior of the propagating
epidemic, rather than merely adding layers of extra com-
plexity to the analysis, may be viewed as providing tem-
poral cues for segmentation of the evolutionary profile of
the epidemic. By pinpointing order of magnitude shifts
in the neighborhood structure of the infected network, a
spatio-temporal or socio-temporal portrait of the struc-
ture of the propagating epidemic may be developed,
with the dominant mechanism and associated scalar re-
gion defined for each phase transition. Given the pre-
and post- images of a socio-temporal locality associ-



ated with a phase transition, the principle spatial vec-
tors supporting the local infectious transmission may be
identified. In the case of a simulation or a post-mortem
analysis of an outbreak, in which complete information
is assumed, a direct analysis may be performed on the
fully labeled data set. Alternatively, in a realistic set-
ting with limited infection data and sparse information
as to social network interactions, exploratory and pre-
ventive resources may be directed via a combination of
semi-supervised learning and active sampling techniques
based on a gaussian random field description of classifi-
cation potentials in the labeled and unlabeled space.

2 Background:

As an example of a spatial strategy for pandemic
response, Fergusen et al. [1] demonstrates that a
rapid response strategy concentrated in elliptical spatial
regions of appropriate size about identified instances
of influenza effectively halts the spread of the disease
in a simulated outbreak in Southeast Asia. However,
the simulated region is primarily rural and population
density is treated as relatively sparse and homogenous.
The current task is to examine a simulated outbreak in
the more complex environment of the city of Portland.
At this level of detail, the characteristics of the social
network structure are much more critical to determining
the course of infection, and the complexities of typical
spatio-temporal interactions of spatial entities tends to
make definition and isolation of localities difficult.

Since there is minimal cost associated with connec-
tion maintenance in a network of individuals infected in
a pandemic scenario, the theory of “small-world” net-
works [5, 6]suggests that nonlinear phase transitions or
order of magnitude shifts in certain measures of net-
work connectivity or path length may be used to iden-
tify critical points in the temporal evolution of the pan-
demic. Analysis of the contact events and implied net-
work connectivity provides a basis for defining the local
attributes and spatial extent of the infectious expan-
sion. Appropriate measures for monitoring, quarantine,
population dispersal may then be applied at the proper
scale.

When attempting to identify order of magnitude
shifts in the structure of the infected network, simple,
locally defined heuristic measures should be sufficient.
Examples of two possible measures for use in cluster
detection— characteristic path length and connection
density— are described in [11, 12]. M.E. J. Newman
[10] develops a useful measure for fast detection of
community structure, which we describe in detail in
Section 3.2.

Since it is unlikely that a complete description
of local connectivity will be available in a practical

setting, predictions of unseen links and potential link
formation may be informed by principles of preferential
attachment and nodal influence as suggested by the
(independent) work of Newman and Kleinberg [7, 8, 9].
Similar assumptions of increased likelihood of infection
with proximity of individuals in the social network
substrate suggest a diffusive or random walk model to
describe the local mechanism for disease propagation.

Given this preferential model for social network for-
mation and disease transfer, a method for stochastic la-
beling of unclassified nodes in the social network may
be defined. Diffusive propagation of classification labels
in a sparsely labeled undirected graph is addressed by
Zhu, Lafferty, et al. [3, 4]. The semi-supervised learning
and active sampling techniques based on assumptions of
a gaussian random field defined on the nodes of the so-
cial network provide the foundation for development of
practical method for allocating resources, given sparse
knowledge of the social network and sparse reporting
of infectious events. The methods in [3, 4] are closely
related to techniques based on gaussian processes based
active sampling for spatial aggregation methods, as de-
scribed in [2]. Zhu et al. have the advantage in the
current context; however, that the random field is de-
fined in terms of the nxn connectivity matrix of the
social network nodes rather than on a spatial grid.

3 Methodology

One of the most interesting aspects of the current prob-
lem is the fact that the social channels supporting
pandemic propagation may be viewed as an evolving
substrate. Where traditional spatial aggregation as-
sumes pattern analysis on a fixed lattice, an aggrega-
tion technique operating on a social network must cope,
in the absence of perfect information about the spatio-
temporal social network structure, with a continuously
evolving infrastructure of transmission. Our proposed
methodology seeks to turn this difficulty into an advan-
tage by using the nonlinear phase transitions associated
with the connective properties of the densifying network
of infected entities to identify critical socio-temporal re-
gions in the dendogram.

As suggested by dynamic social network models
positing preferential attachment [5, 6, 7, 8, 9] , we ex-
pect the probability of infection for a particular node to
be a function (often linear) of the amount of contact the
node has with infected neighbors. The dynamics of net-
work organization driven by mechanisms of preferential
attachment tend to exhibit nonlinearities or phase tran-
sitions in several connectivity measures as networks den-
sify and network connectivity transitions from sparse to
dense [5, 6]. Phase transitions are predicted, even in in-
stances where the maximum neighborhood size per node



is restricted [7].
By tracking local measures of network connectivity

we may readily identify critical moments in the organi-
zation of the infected network. These critical points cor-
respond to order of magnitude shifts in structural den-
sity of the network, and thus reflect the optimal points
for qualitiative aggregation. Analysis of the pre- and
post-transition network images yields the spatial com-
ponents associated with the expanded infectious cluster.

In this methodology, clustering of the dendogram is
defined as a temporally evolving hierarchal agglomera-
tion technique. And, in an analogy drawn from the path
planning literature, the edges connecting well defined
clusters in the dendogram are exploratory, while the
connections formed during the nonlinear densification
or consolidation phases may be considered exploitive.

3.1 Local measures for clustering. Several pos-
sible measures for establishing cluster density or rel-
ative connectedness are possible. One common mea-
sure, characteristic path length (CPL) [11, 12] measures
the average shortest path link distance between pairs of
nodes. An attractive property of the measure is its rel-
ative insensitivity to the number of nodes in the graph;
however, the metric may be too computationally inten-
sive for establishing large clusters. Another common
measure is the connection density, defined as the pro-
portion of the total number of edges in the graph vs.
the total possible edges. This measure is much easier to
calculate than CPL, but is too sensitive to the number
of nodes to be reliable indicator of connectedness.

A preferable measure of community structure is due
to M.E.J. Newman [10] and compares the number of
intracluster edges with the number of edges which would
fall in the cluster if all edges incident to the cluster were
placed randomly. With eii defined as the fraction of
edges in the network whose endpoints both correspond
to nodes in cluster i and eij defined as 1/2 of the fraction
of edges with exactly one endpoint in cluster i, the local
density estimate for cluster i is given by:

Qi = eii − e2
ij

Summing over all clusters yields a global measure of
community structure. The measure has several attrac-
tive properties including ease of computation. The mea-
sure qualitatively captures the essence of the clustering
property. In addition, it is defined in terms of the ac-
tual edges incident upon a cluster, rather than potential
edges— making it less sensitive to variations in cluster
scale than the density measure. By thresholding this
clustering measure, we may define a simple heuristic
for iterative clustering as nodes are added to the evolv-
ing infectious network. The heuristic need only support

three monotonic behaviors in the clustering process.

• Addition of new clusters— exploratory edges con-
nect sparse regions to the infected network.

• Intra-cluster densification.

• Inter-cluster densification.

Critical points in the propagation of the epidemic are
identified during the densification process by sponta-
neous aggregation of clusters or by a rapid change in
the local connectivity measure.

3.2 Spatial Aggregation, Link Prediction and
Active Sampling at Critical Points. Identifica-
tion of critical points in the evolution of the infected net-
work provides a roadmap in the socio-temporal space for
application of spatial aggregation strategies. The non-
linear rate of coalescence at critical points effectively
discretizes the evolutionary process. In the presence
of complete information, as in a simulated enviroment,
statistical forensics on the pre- and post- images of an
infected cluster may be applied to determine the dom-
inant spatio-temporal channels which were responsible
for the local densification. Assuming complete informa-
tion, this straightforward forensic analysis can yield a
qualitative portrait of the expected evolution of trans-
mission channels which is useful for grounding the de-
velopment of practical resource allocation strategies.

While a forensic analysis can provide a useful frame-
work for long term planning, a practical real-time re-
sponse strategy must also consider issues of prediction.
Obviously, a response strategy should not wait for phys-
ical phase transitions before determining scope of re-
sponse, since these transitions correspond to order of
magnitude escalations in infection. An effective re-
sponse strategy should strive both to predict the loca-
tion and scope of potential escalations and to project an
appropriate firewall for containing the disease. Thus, ef-
fective prediction requires a probabilistic assessment of
the potential risk of infection for nodes at the frontier
of the infected network.

When considering projections onto unlabelled re-
gions, many practical issues arise. In contrast to our
simulated environment, in an actual pandemic situa-
tion, information on infected instances will likely be
quite sparse, as will information as to the social inter-
actions of affected individuals. A useful strategy for
practical allocation of response resources must include
a mechanism for defining expected disease classification
labels on unsampled nodes, as well as a strategy for ac-
tively sampling infectious neighborhoods in the social
network. Active sampling strategies serve several func-
tions in this context including— identification of loca-



tions at immediate risk of infection and allocation of
resources toward mapping the social network in order
to establish the probabilistically defined frontier of the
propagating infection.

Recent work attempts to exploit un-labeled sam-
ple points for spatial aggregation [2] by establishing a
stochastic assignment of unlabeled regions via a gaus-
sian process. As previously noted, the tendency of so-
cial network interactions to defy spatially defined neigh-
borhood relationships suggests that stochastic methods
should be designed to operate on the social interaction
matrix. The work of Zhu et. al. [3, 4] provides a nat-
ural framework for stochastic classification and active
sampling in the current context.

Given a graph defining connectivity of a collection
of sparsely labeled nodes, a semi-supervised (incorporat-
ing labeled and unlabeled data) learning problem may
be formulated in terms of a Gaussian random field on
the graph. The minimum energy configuration of the
gaussian random field, given the constraints defined by
the node labelings and the connectivity matrix corre-
sponds roughly to the equilibrium state of a diffusion
process propagating in the unlabeled regions of the ma-
trix. This interpretation is particularly suited to the
current context, with the label diffusion reflecting the
propagation of infected particles via a random walk pro-
cess in the unexplored regions of the social network.

A brief description of the semi-supervised learning
process described in [3] elucidates the utility of the
gaussian kernel method. Placing the nodes x of the
cluster of interest in Rm we define a weight matrix:

wij = exp
(
−

m∑
d=1

(xid − xjd)2

σ2
d

)
where xid is the d-th component of instance xi repre-
sented as a vector xi ∈ Rm. (As a practical consider-
ation, we expect the spatial representation of the data
to be further differentiated according to modality of the
spatial interactions— that is, home, work, school, etc.).

In the learning step, the σd’s are fit using both la-
beled and unlabeled data via gradient descent in the
hyperparameter space. Since we are dealing with un-
labeled data, the usual optimization criterion— max-
imization of likelihood of the labeled data— does not
apply. Instead, the average label entropy is used as a
heuristic criterion. This is reasonable, since the space
of low entropy labelings achievable by harmonic mini-
mization is relatively small. As a practical side effect,
the process of fitting these hyperparameters serves as
a feature selection mechanism, establishing the orienta-
tion and magnitude of the principle vectors of infectious
transmission.

The active sampling method in [4] selects unlabeled

points for classification which will lead to maximum re-
duction in classification risk (the estimated generaliza-
tion error of the classifier). In the pandemic application,
there are several potential goals for active sampling. A
strategy might potentially target some resources toward
unlabeled nodes with the maximum risk of infection
(minimum risk of classification = 0) along principle vec-
tors of transmission. Alternatively, epidemic firewalls
may be defined by placing resources at maximal classi-
fication risk boundaries, in order to monitor the spread
of the disease to new areas and to pre-empt order of
magnitude jumps in the scale of infected regions.

4 Synopsis:

In conclusion, the proposed methodology for applying
spatial aggregation techniques to the context of pan-
demic response and control may be summarized as fol-
lows:

1. Monitor local measures of network connectivity to
identify phase transitions signaling critical points
(order of magnitude scalar shifts) in propagation
of the disease.

2. Maintain an evolving dendogram of the infected
social network with cluster points defined socio-
temporally at critical points identified in Step 1.

3. For each active cluster in the dendogram, establish
critical channels and scale of propagation by com-
parison of pre- and post- transitional images. These
channels may be determined via direct evidence in
a forensic analysis or, in a practical response strat-
egy, via a semi-supervised learning technique incor-
porating unlabeled data.

4. Employ active sampling in the semi-supervised
framework to monitor cluster boundaries and to
apply resources to high threat nodes along principle
vectors of transmission.
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